"Un corpo, non sottoposto a forze, mantiene indefinitamente il suo stato di quiete
o di moto rettilineo ed uniforme (con velocità costante)".
Se teniamo presente che l'inerzia dei corpi, cioè la loro attitudine a mantenere
invariato il loro stato di quiete o di moto rettilineo ed uniforme è tanto maggiore
quanto maggiore è la loro massa, cioè la quantità di materia che li caratterizza,
deduciamo che questo principio è una conseguenza diretta dell'inerzia, che nel sistema
internazionale di unità di misura si esprime in chilogrammi.
Sulla Terra l'effetto della forza di gravità può essere neutralizzato facendo muovere i
corpi su un piano orizzontale rigido e liscio, con caratteristiche tali da consentire di
attenuare notevolmente gli effetti delle forze di attrito, che tendono ad ostacolare il
moto.
Per verificare che un corpo in moto rettilineo, se non è soggetto a forze,continua a
muoversi in linea retta con velocità costante, potremmo fare alcune prove con alcune
biglie d'avorio, come quelle che si adoperano per giocare a bigliardo, facendole muovere
su superfici orizzontali, rigide e di differente levigatezza.
Cercando di imprimere alle biglie la stessa velocità iniziale in tutte le prove, potremmo
rilevare che lo spazio percorso prima dell'arresto è tanto più grande quanto più
levigata è la superficie.
Per esempio, potremmo rilevare che la distanza di arresto, a parità di velocità
iniziale, è maggiore se si esegue l'esperienza su una lastra orizzontale di marmo,
rispetto alla distanza di arresto su una superficie orizzontale rigida rivestita di
stoffa, che presenta un attrito maggiore.
Si deduce, estrapolando i risultati sperimentali, che il moto rettilineo non cesserebbe
mai se si potessero eliminare completamente tutte le resistenze passive che si oppongono
al moto, cioè le forze d'attrito nel punto di contatto tra biglia e superficie e le forze
aerodinamiche (resistenza dell'aria).
Un'astronave è il laboratorio ideale per la verifica del principio d'inerzia, poichè in
essa il peso dei corpi è neutralizzato dall'accelerazione centrifuga del moto orbitale.
Per rendercene conto, pensiamo agli astronauti che fanno esperimenti di meccanica in
assenza di gravità, imprimendo ai corpi che "galleggiano" nella navicella
spaziale, piccole spinte che producono moti rettilinei con velocità costante fino al
momento dell'impatto dei corpi con le pareti della navicella.
Nel XVII secolo Galilei, facendo rotolare i corpi su un piano inclinato liscio, che
gli consentiva di ridurre notevolmente il valore
dell' accelerazione di gravità (9,8 m/s2) per eseguire agevolmente gli
esperimenti, rilevava variazioni di velocità sempre più piccole al diminuire
dell'inclinazione del piano.
Ebbe così l'intuizione geniale di prevedere, nel caso del piano orizzontale liscio, il
mantenimento indefinito dello stato di moto rettilineo ed uniforme di un corpo, nelle
condizioni ideali di eliminazione di tutte le forze, svincolandosi definitivamente dalla
fisica di Aristotele, il quale, senza ricorrere ad alcun esperimento, sentenziò che
occorre sempre una forza per mantenere il moto rettilineo ed uniforme di un corpo.
L'impulso di una forza è una grandezza fisica vettoriale, caratterizzata cioè da un
numero e da una direzione orientata, ed è definita, se la forza è costante,dal prodotto I = F t della forza per l' intervallo di tempo t durante il quale essa agisce su un corpo.
Se, per esempio, ad un corpo viene applicata una forza costante di 3 kg-peso in un
intervallo di tempo di 10 secondi, l'impulso della forza è pari a 30 kg-peso x sec.
L'impulso della forza è in sostanza un vettore parallelo e concorde con la forza, ed ha un
valore (modulo) proporzionale al tempo durante il quale la forza agisce.
La quantità di moto di un corpo è una grandezza fisica vettoriale, parallela alla
velocità, ed ha un modulo P = m V direttamente proporzionale
sia alla massa m del corpo, che alla sua velocità V.
Se, per esempio, un autotreno da trenta tonnellate si muove alla stessa velocità di un'
auto da una tonnellata, il primo possiede una quantità di moto trenta volte maggiore di
quella dell' auto.
Una forza applicata ad un corpo in movimento, lo accelera se è parallela e concorde in
verso con il vettore velocità, oppure se forma con esso un angolo minore di 90°, lo
decelera se è invece parallela e discorde in verso con il vettore velocità, oppure se
forma con esso un angolo maggiore di 90°.
Mentre nel primo caso aumentano la velocità e la quantità di moto,in quanto il corpo
viene accelerato nel verso della velocità iniziale , nel secondo caso invece la velocità
e la quantità di moto diminuiscono, in quanto il corpo viene decelerato nel verso della
velocità iniziale, finchè non si fermerà per essere subito dopo accelerato nella
direzione e nel verso della forza.
Pertanto una o più forze applicate ad un corpo, sostituibili con la relativa risultante,
hanno come effetto una variazione della velocità e della quantità di moto del corpo.
Per la seconda legge della dinamica, se una o piu forze costanti, sostituibili con la
relativa risultante F, agiscono su un corpo in movimento per
un dato intervallo di tempo t, l'impulso I della forza o della risultante delle forze uguaglia la variazione
della quantità di moto del corpo, in relazione allo stesso intervallo di tempo:
I = F t
= Pfinale - Piniziale = m (Vfinale - Viniziale).
Questa fondamentale legge della natura, scoperta da Galileo Galilei ed enunciata
matematicamente da Newton dopo l' introduzione del calcolo differenziale, che fu
inventato, indipendentemente, da Newton e Leibnitz , è nota come secondo principio della
dinamica, e comprende come caso particolare il principio d' inerzia.
Se, per esempio, si applicasse ad un corpo inizialmente fermo o in moto rettilineo
uniforme, una forza costante di 10 kg-peso per 5 secondi, ottenendo un certo aumento della
quantità di moto , si potrebbe verificare che, ripetendo l' esperimento con lo stesso
corpo e con una forza costante di 30 Kg-peso, si otterrebbe nello stesso intervallo di
tempo una variazione della quantità di moto tripla della precedente.
Poichè la quantità di moto di un corpo varia sia al variare della velocità, sia se la
massa del corpo aumenta o diminuisce durante il moto, la seconda legge della dinamica
,enunciata attraverso la variazione della quantità di moto, è valida anche nei casi
particolari in cui un corpo acquista o cede materia durante il moto, come accade nel caso
di un missile, la cui massa al momento del lancio,quando i serbatoi sono pieni di
combustibile e di comburente (idrogeno e ossigeno liquidi), è maggiore della massa
relativa alla fase finale del volo,quando i serbatoi sono quasi vuoti.
Nei casi più comuni, quando la massa del corpo rimane costante durante il moto, la
seconda legge della dinamica si può esprimere attraverso la variazione della velocità
nell'intervallo di tempo durante il quale il corpo subisce l'azione della forza o della
risultante delle forze.
Se teniamo presente che l'accelerazione media di un corpo in moto si definisce come il
rapporto tra la variazione di velocità dello stesso e l'intervallo di tempo che si
considera, possiamo enunciare la seconda legge dell dinamica affermando che laccelerazione
a acquisita da un corpo sotto l'azione di una forza F o della
risultante delle forze esterne applicate ad esso,è parallela e concorde con la forza o
con la risultante delle forze, ed ha un valore inversamente proporzionale alla massa del
corpo, cioè si dimezza se raddoppia la massa del corpo, mantenendo costante la forza, e
raddoppia se invece si dimezza la massa del corpo: a = F / m.
Infatti, se consideriamo un intervallo di tempo di un secondo
(t =1), l' impulso I della forza costante F,
essendo dato dal prodotto di F per il tempo t, uguaglia F in valore, direzione e
verso.
Daltra parte, la variazione di velocità Vfinale - Viniziale
uguaglia in valore,direzione e verso l' accelerazione a.
Pertanto la seconda legge del moto, per un corpo avente massa m,
si può esprimere dicendo che forza ed accelerazione sono direttamente proporzionali: F = m a ,oppure F / a = m.
Per la verifica di questa legge fondamentale potremmo giocare a bigliardo adoperando
biglie di massa differente: cercando di imprimere con la stecca sempre la stessa forza,
potremmo rilevare, in intervalli di tempo uguali, variazioni di velocità inversamente
proporzionali alla massa delle biglie.
Questa legge, enunciata da Galilei sulla base di osservazioni sperimentali, fu espressa
matematicamente da Newton in termini di variazioni della quantità di moto P = MV, utilizzando il formalismo del calcolo differenziale : F = d(MV)/dt , essendo d(MV) la
variazione infinitesima della quantità di moto e dt un
intervallo temporale infinitesimo.
Se è nota la legge di variazione della forza F in funzione
del tempo,della velocità e delle coordinate del corpo su cui essa agisce, la formula di
Newton costituisce l'equazione differenziale del moto, cioè l'equazione fondamentale che
consente di determinare, con metodi analitici o numerici, note la posizione e la velocità
iniziali, la velocità del corpo in funzione del tempo, e quindi le coordinate del corpo
in funzione del tempo.
Se, in particolare, sul corpo non agisce alcuna forza, la quantità di moto P = MV e la velocità V si mantengono
costanti, in base al principio d'inerzia.
Come ulteriore esempio applicativo consideriamo il moto di un veicolo, ferroviario o
stradale, in curva.
In questo caso, la forza che impedisce al veicolo di uscire dalla curva nella direzione
della tangente ad essa, è , nel caso del treno, la forza centripeta (diretta verso il
centro della curva), esercitata dalle rotaie; nel caso di un'auto, invece, la forza
centripeta è costituita dalla risultante delle forze di attrito (aderenza) tra pneumatici
e fondo stradale.
In entrambi i casi, essendo la velocità costante in valore, ma non in direzione, in
quanto essa è diretta , in ogni punto della curva, secondo la tangente ad essa, la
corrispondente variazione di velocità ( e quindi l'accelerazione centripeta) è diretta
verso il centro della curva, in ogni punto di essa.
Pertanto, indicando con F la forza centripeta esercitata dai
binari o dall'attrito tra pneumatici e fondo stradale, si ottiene l'equazione che lega F alla velocità ed al raggio R della
curva: F = ma = mV2/R , dove l'espressione a = V2 /R indica l'accelerazione centripeta.
Dalla formula si deduce che, nel caso dell'auto, data una certa aderenza minima tra
pneumatici e fondo stradale, dipendente dalle condizioni di esso (asfalto asciutto,
bagnato o sdrucciolevole), quanto minore è il raggio della curva, cioè quanto più
stretta è la curva, tanto più piccola deve essere la velocità, per evitare che la
minima forza centripeta disponibile (minima forza d'attrito), Fmin,
non sia sufficiente a mantenere il moto in curva.
Se questa condizione non fosse soddisfatta, il guidatore perderebbe il controllo
dell'auto,che finirebbe fuori strada lungo la tangente alla curva.
Se invece si considera il moto in curva di un veicolo a due ruote, per garantire la
stabilità in curva bisogna aggiungere alla forza centripeta dovuta all'aderenza tra
pneumatici e fondo stradale, anche la componente orizzontale della forza di reazione del
fondo stradale (obliqua rispetto al suolo) sul veicolo (bicicletta o motocicletta) ,che il
guidatore abbia provveduto ad inclinare di un certo angolo verso l'interno della curva.
In questo caso, la componente verticale della forza di reazione del fondo stradale
uguaglia il peso del veicolo e del passeggero, mentre la componente orizzontale fornisce
la forza centripeta aggiuntiva, necessaria per evitare che il veicolo vada a finire fuori
strada lungo la tangente alla curva.
Per lo stesso motivo le piste dei velodromi ed il piano di appoggio delle rotaie
ferroviarie devono risultare inclinate, in curva, di un angolo tanto maggiore quanto
maggiore è la velocità massima.
La terza legge delle dinamica,nota come principio di azione e reazione, fu enunciata da
Newton,ed afferma che :"Ad ogni azione corrisponde una reazione uguale e
contraria".
Questo principio esprime che la forza che un corpo esercita su un secondo corpo è sempre
uguale e di verso opposto a quella che il secondo corpo esercita sul primo.
Numerosi sono gli esempi di applicazione di questo principio:
1) Quando camminiamo, la forza (azione) che i nostri piedi esercitano all'indietro sul
suolo, è sempre uguale e contraria a quella (reazione) che il suolo esercita sui nostri
piedi, e che ci consente di muoverci in avanti;
2) L'elica di una nave o di un elicottero esercita una forza (azione), rispettivamente
sull'acqua o sull'aria, uguale e contraria alla forza (reazione) che l'acqua o l'aria
esercitano rispettivamente sulla nave, facendola avanzare, o sull'elicottero,
equilibrandone il peso;
3) Un missile esercita una forza (azione) sui gas infuocati che escono dagli ugelli dei
suoi motori a reazione, uguale e contraria a quella (reazione) che i gas infuocati
esercitano sul missile, facendolo avanzare;
4) I pneumatici di un veicolo esercitano, nei punti di contatto col suolo, delle forze (di
azione) dirette all'indietro, uguali e contrarie alle forze di attrito (di reazione) che
il suolo esercita sui pneumatici, impedendone lo slittamento e facendo avanzare il
veicolo;
5) Un'arma da fuoco, lanciando il proiettile, esercita su di esso una forza (azione),
uguale e contraria (reazione) a quella che il proiettile esercita sull'arma da fuoco
provocandone il rinculo.
Esempi: Quando si verifica un urto tra due corpi, uno dei due
corpi esercita sull' altro una forza, di azione, uguale e contraria a quella di reazione
che esso subisce da parte dellaltro corpo.
Le forze di azione e reazione agiscono sempre nella stessa direzione ed hanno versi
opposti.
Un altro esempio di forze di azione e reazione ci viene fornito dalle forze di attrazione
gravitazionale tra due masse, per esempio tra il Sole ed un pianeta: il Sole attrae un
pianeta con una forza gravitazionale uguale e contraria a quella con cui esso viene
attratto dal pianeta.
E' evidente che, essendo la massa del Sole molto maggiore di quella del pianeta,
l'
accelerazione subita dal Sole è molto più piccola di quella subita dal pianeta.
Una situazione analoga si verifica nel caso delle forze attrattive o repulsive tra cariche
elettriche.
Un altro esempio ci viene fornito dalla forza centripeta, forza di azione, che fa muovere
di moto circolare uniforme un corpo legato ad una mano con un filo, e dalla forza
centrifuga, forza di reazione, che la mano subisce da parte del corpo che ruota.